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Introduction

Knowledge elicitation continues to be a bottleneck to
constructing decision-theoretic systems. Most knowl-

edge representations for these systems require complete
knowledge of the domain before the systems become

useable. Methodologies and techniques for incremen-
tal elicitation of knowledge in support of users' current
goals is desirable. A primary goal of our research is to

develop a comprehensive software engineering, knowl-
edge engineering, and knowledge elicitation method-

ology for Symbiotic Information Reasoning and Deci-
sion Support (Banks et al. 1997). To that end, in this

position paper we briey discuss Bayesian knowledge
bases, a probabilistic knowledge representation allow-
ing for incomplete speci�cation of knowledge. We de-

scribe how Bayesian knowledge bases along with an
intelligent interface agent are used in an expert system

shell called PESKI to support incremental knowledge
elicitation.

Bayesian Knowledge Bases

To support the design of decision-theoretic systems,
we desire to have a knowledge representation that sup-

ports modeling uncertainty and is exible, intuitive,
and mathematically sound. A Bayesian knowledge
base (abbrev. BKB) is a probabilistic knowledge rep-

resentation meeting the preceding qualities (Santos Jr.
& Santos 1996). A BKB supports theoretically sound

and consistent probabilistic inference | even with in-
complete knowledge | with the intuitiveness of \if-

then" rule speci�cation. The representation is simi-
lar to Bayesian Networks (Pearl 1988); it is a directed

graph capable of representing uncertainty in knowledge

via probabilistic relationships between random vari-
ables. However, Bayesian networks do not allow for

incompleteness.

The PESKI Environment

PESKI (Probabilities, Expert Systems, Knowl-
edge, and Inference) is an integrated probabilis-

tic knowledge-based expert system shell utilizing
Bayesian knowledge bases as its knowledge represen-
tation. PESKI provides users with knowledge acqui-

sition (Santos Jr., Banks, & Banks 1997), veri�cation
and validation (Santos Jr., Gleason, & Banks 1997;

Bawcom 1997), data mining, and inference engine
tools (Shimony, Domshlak, & Santos Jr. 1997), each

capable of operating in various communication modes.
For more information on PESKI, see the United States
Air Force Institute of Technology's Arti�cial Intelli-

gence Laboratory web site1.
PESKI supports incremental knowledge elicitation

in a number of ways (Santos Jr., Banks, & Banks 1997).
During knowledge acquisition, the user is alerted to
any inconsistencies in the BKB knowledge representa-

tion. For example, if the user attempts to add a rule
that creates a cycle in the knowledge base, PESKI will

display an error message to the user. We use a test
case-based approach to knowledge base veri�cation and

validation (Santos Jr., Gleason, & Banks 1997). The
user submits test cases by providing evidence and a
proposed answer(s) and PESKI determines via infer-

ence if, with the given knowledge, the answer speci�ed

1
http://www.afit.af.mil/Schools/EN/ENG/LABS/AI/



in the test case could be obtained given the evidence.

If PESKI can not, incompleteness exists and additional
knowledge must be elicited. PESKI supports the cor-

rection of any incompleteness found using a graphical
incompleteness tool (Bawcom 1997). Figure 1 shows
an example of the use of this tool in PESKI. The tool

uses data visualization of the BKB and data mining to
assist the user in eliciting the needed knowledge.

Figure 1: PESKI's Graphical Incompleteness Tool.

We have integrated an intelligent interface agent

into PESKI (Harrington, Banks, & Santos Jr. 1996a;
1996b; Harrington & Brown 1997). The overall goal of
the agent is to o�er timely, bene�cial assistance to the

user as he/she interacts with PESKI. To accomplish
this goal, an accurate cognitive model of the user is

maintained (Brown et al. 1998). The agent is currently
capable of o�ering assistance for tool, communication

mode, and knowledge base use. We are currently re-
searching expanding the agent's user model to allow
the agent to elicit information from the user based on

what goals he/she is trying to achieve, his/her prefer-
ences, and past actions. To that end, we are adding

domain knowledge of BKBs to the interface agent's
user model.
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